👤

FRstudy.me: votre ressource incontournable pour des réponses expertes. Posez n'importe quelle question et recevez des réponses bien informées de la part de notre communauté de professionnels expérimentés.

Bonjour
Pouvez vous m'aider pour le 1) ?
Je n'arrive pas à factoriser le dénominateur pour faire ensuite un tableau des signes ?
Merci d'avance


Bonjour Pouvez Vous Maider Pour Le 1 Je Narrive Pas À Factoriser Le Dénominateur Pour Faire Ensuite Un Tableau Des Signes Merci Davance class=

Sagot :

Réponse :bjr

Explications étape par étape :

View image Аноним

Réponse :

Explications étape par étape :

Bonjour

1) dans R

(x² - 1) / (x² - 6x +8) > 0

soit A = (x² - 1) / (x² - 6x +8) > 0

on doit vérifier que x² - 6x + 8 ≠ 0

cherchons d'abord x² - 6x + 8 = 0

calcul du discriminant Δ = b² - 4 ac avec a = 1, b = - 6 et c = 8

Δ = ( - 6)² - 4 (1)(8)

Δ = 36 - 32

Δ = 4 > 0 , et √Δ = √ 4 = 2

donc l'équation x² - 6x + 8 = 0 admet deux solutions

x₁= ( - b - √Δ) / (2 a) et  x₂ = ( - b + √Δ) / (2 a)

a = 1, b = - 6 et c = 8

x₁ = ( - (- 6) - 2) / (2(1)) et  x₂ = ( - (- 6)  + 2) / (2(1))

x₁ = ( 6 - 2) / (2) et x₂ = ( 6 + 2) / (2)

x₁ = 4/2 et x₂= 8/2

x₁ = 2 et x₂= 4

donc l'équation x² - 6x + 8 = 0 peut s'écrire de la forme a (x - x₁)(x - x₂)

ainsi x² - 6x + 8 = 0 = 1(x - 2) (x - 4)

donc x² - 6x + 8 = (x - 2) (x - 4) = 0

donc les valeurs interdites sont 2 et 4

L'ensemble de définition est R \ { 2;4}

Sur R \ { 2;4}, on a donc

(x² - 1) / (x² - 6x +8) > 0 si x² - 1 >0

si (x - 1) (x + 1) > 0

tableau de signes

x             -∞                 - 1            1             2             4            + ∞

_______________________________________________

x - 1                       -             -     ⊕     +             +             +

_______________________________________________

x + 1                      -     ⊕     +             +             +             +

_______________________________________________

x - 2                     -              -               -    ⊕     +             +

_______________________________________________

x - 4                     -              -               -             -    ⊕     +

_______________________________________________

A                       +       ⊕      -     ⊕      +  ║     -      ║     +

S = ] -∞; - 1[ ∪ ] 1;2[ ∪ ]4;+∞[

je n'ai fait que la question 1) comme tu l'as demandé :)

Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses mises à jour.