Explorez une vaste gamme de sujets et obtenez des réponses sur FRstudy.me. Trouvez des réponses détaillées et fiables de la part de notre réseau de professionnels expérimentés.
Sagot :
Bonjour :))
[tex]On\ consid\`ere\ la\ fonction\ d\'efinie\ sur\ \mathbb R\ par\ f(x) = x^{2}+4x-5\\\\Expression\ g\'en\'erale\ de\ la\ forme\ canonique\ (FC)\\a(x-\alpha)^{2} + \beta\\\\f(x) = (x-2)^{2}-4-5=(x-2)^{2}-9\\\\Expression\ g\'en\'erale\ de\ la\ forme\ factoris\'ee\ (FF)\\a(x-x_1)(x-x_2)\\\\\Delta = b^{2} - 4ac = 4^{2} -4 * (-5) * 1 = 16 + 20 = 36>0\\Deux\ racines\ distinctes\ dans\ \mathbb R:\\x_1 = \frac{-4-6}{2} = -5\\\\x_2 = \frac{-4+6}{2} = 1\\\\Donc\ f(x) = (x-1)(x+5)\\[/tex]
[tex]Le\ point\ A\ appartient\ \`a\ la\ courbe\ \et\ est\ sur\ l'axe\ des\ ordonn\'ees\ donc\ son\ abscisse\ est\ 0.\\On\ sait\ que\ f(x)=(x-1)(x+5)\\\\Donc\ f(0)=(0-1)(0+5) = -5\\\\Le\ point\ A\ a\ pour\ coordonn\'ees\ [0; -5][/tex]
[tex]Les\ points\ B\ et\ C\ appartiennent\ \`a\ la\ courbe\ et\ sont\ sur\ l'axe\ des\ abscisses.\\ Donc\ ils\ ont\ pour\ ordonn\'ee\ y=0\\\\Cela\ revient\ \`a\ conna\^itre\ les\ racines\ solutions\ de\ f(x)\\[/tex]
[tex]La\ forme\ factoris\'ee\ permet\ de\ les\ reconna\^itre\ directement\\\\\\f(x) = (x-1)(x+5)\\\\[/tex]
[tex]B(-5;0)\ et\ C(1;0)[/tex]
Le tableau de variation est donné en pièces jointes. (réalisé avec la forme canonique)
Espérant t'avoir aidé, reviens vers moi pour toutes explications supplémentaires.
Nous sommes ravis de vous compter parmi nos membres. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons créer une ressource de connaissances précieuse. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses mises à jour.