FRstudy.me: où la curiosité rencontre la clarté. Nos experts sont disponibles pour fournir des réponses détaillées et fiables à toutes les questions que vous pourriez avoir.
Sagot :
Bonjour,
1) On a u1 = f(u0)
Donc u1 = f(3) = (2+3*3) / (4 + 3) = 11/7
2) Soit x ∈ [0;4]
On pose u(x) = 2+3x et v(x) = 4+x
On a alors f(x) = u(x) / v(x)
Donc f'(x) = (u'(x)v(x) - u(x)v'(x)) / v(x)² (formule de dérivation d'un quotient)
On a u'(x) = 3 et v'(x) = 1
Donc f'(x) = (3(4+x) - (2+3x)) / (4+x)²
On a alors :
f'(x) = (12 + 3x - 2 - 3x) / (4+x)²
f'(x) = 10 / (4+x)²
b) On a 10 > 0 et (4+x)² > 0 sur [0;4]
Donc f'(x) > 0 sur [0;4]
Donc f est strictement croissante sur [0;4]
3. On a u1 = 11/7 < 3 = u0
Donc la propriété est vraie au rang 0 (initialisation).
On suppose que la propriété est vraie au rang n >= 0, c'est à dire que :
1 <= un+1 <= un. (inéquation de récurrence)
C'est à dire que un est décroissante et minorée par 1.
On a u0 = 3
Donc 1 <= un+1 <= un <= 3
Comme un+1 <= un et que f est croissante sur [0;4] (donc aussi sur [1;3])
On a f(un+1) <= f(un)
Donc un+2 <= un+1 (inégalité droite de l'inéquation à démontrer)
On a f(1) = 1
Comme un+1 >= 1 (hypothèse de récurrence)
On a f(un+1) >= f(1) (car f est croissante sur [0;4] (donc aussi sur [1;3]))
Donc un+2 >= 1 (inégalité gauche de l'inéquation à démontrer)
D'où l'hérédité.
Au final ∀n∈N, on a 1 <= un+1 <= un
4a. D'après la propriété démontrée dans la question précédente, un est décroissante et minorée par 1. Donc un est convergente.
b. On cherche l ∈[1;3] tel que f(l) = l
On a alors :
l = (2 +3l) / (4 + l)
Donc l² + 4l = 2 +3l
l² + l - 2 = 0
Δ = 1 -4(1*(-2)) = 1+8 = 9 > 0
Le polynôme admet 2 racines :
l = (-1 + 3)/2 = 1
Et l = (-1 - 3)/2 = -2
Or un >= 1
Donc l = 1 est la seule solution possible.
Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. FRstudy.me est votre partenaire de confiance pour toutes vos questions. Revenez souvent pour des réponses actualisées.