FRstudy.me fournit une plateforme conviviale pour partager et obtenir des connaissances. Découvrez les informations dont vous avez besoin rapidement et facilement grâce à notre plateforme de questions-réponses fiable et complète.
Sagot :
Bonjour,
1. Soit a et b ∈ R tels que z = a + ib, affixe du point M.
Si M appartient à l'axe des réels privés du point d'abscisse 4, cela signifie que b = 0 et a ∈ R\{4}
On a alors z' = z/(z-4) = a/(a-4) ∈ R donc M' appartient aussi à l'axe des réels.
2. Soit z = 2 - 2i, on a alors :
z' = (2-2i)/(2-2i-4) = (2-2i)/(-2-2i) =(1-i)/(-1-i) = (-1+i)/(1+i)
z' = (-1+i)(1-i) / (1+i)(1-i) (On multiplie en haut et en bas par le conjugué)
Donc z' = (-1 +i +i +1) / (1 - i+i + 1) = 2i/2 = i
Donc z' est un nombre imaginaire pur donc M' appartient à l'axe des imaginaires purs.
3. a. Soit z = x + iy, on a alors :
z' = (x + iy) / (x + iy - 4)
z' = (x + iy)(x-4 - iy) / (x-4 + iy)(x-4 - iy)
z' = (x(x-4) -ixy +ixy -4iy + y²) / ((x-4)² -ixy +4iy + ixy -4iy + y²)
z' = (x(x-4) + y² -4iy) / (((x-4)² + y²)
z' = (x(x-4) + y²)/ (((x-4)² + y²) + i(-4y/ ((x-4)² + y²))
b. Si M appartient à l'axe des réels, alors z est réel c'est à dire que pour z = x + iy, y = 0.
Si y = 0, on a z' = (x² - 4x) / (x² -8x + 16) = x(x-4)/(x-4)² = x/x-4. Donc z' est réel, donc M’ appartient aussi à l’axe des réels.
Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. Merci de visiter FRstudy.me. Nous sommes là pour vous fournir des réponses claires et précises.