👤

Obtenez des conseils avisés et des réponses précises sur FRstudy.me. Trouvez des solutions rapides et fiables à vos problèmes avec l'aide de notre communauté d'experts dévoués.

bonjour, j’ai besoin d’aide pour un dm de maths svp !!

L'organisateur d'un concert a remarqué qu'à 40€ la place, il peut compter sur 500 spectateurs et que chaque
baisse de 2,50 € lui amène 100 personnes de plus.

1°) a) Après x baisses de 2,5 €, exprimer en fonction de x
>Le prix de la place de concert.
>Le nombre de spectateurs.

b) Déduire de la question précédente la définition de la fonction R qui au nombre x de baisses de 2,5€
associe la recette R(x) du concert.

c) Quelle est la nature de la fonction R ainsi définie ? (justifier).

d) Sachant que la place est vendue au maximum à 40 €, préciser alors sur quel intervalle la fonction R
modélise la situation, autrement dit à quel intervalle appartient x

2°) Montrer que la fonction R admet un extremum que vous préciserez ainsi que la valeur en laquelle il est
atteint

3°) On suppose enfin que l'organisateur ne s'intéresse qu'à un nombre entier de baisses de 2,5 € du prix de la
place:
O€; 2,50 € ; 5€ ; 7,50€, 10 € ;..etc.
A quel prix l'organisateur du concert doit-il vendre la place ? Quelle est alors la recette ?


Sagot :

Réponse :

Explications étape par étape :

■ Recette initiale :

   40 €/personne x 500 spectateurs = 20ooo €uros .

baisser le tarif de 2,5o € permet de gagner

   100 spectateurs supplémentaires, d' où le tableau :

 

     prix --> 40    37,5   35   32,5   30   27,5    25   22,5   20 €

nb spec -> 5oo  6oo  7oo   8oo  9oo  1ooo  11oo  12oo  13oo

 

prix de la place = 40 - 2,5x

  nb de spectateurs = 500 + 100x .

  d' où la Recette :

   R(x) = (40-2,5x) (500+100x) = 20ooo + 2750x - 250x²

  La représentation graphique de la fonction R

                                          est une Parabole en ∩ .

0 ≤ x < 16 car 40/2,5 = 16 . ( x est un nombre entier ! )

■ recherche de l' extremum :

   R ' (x) = 2750 - 500x est nulle pour x = 5,5

   on retient donc x = 5 ou x = 6 .

   avec x = 6, on obtient :

   prix de la place = 25 €uros/personne

   nb de spectateurs = 1100 spectateurs

   d' où Recette = 27500 €uros !

   conclusion :

   l' extremum E a pour coordonnées E( 6 ; 27500 ) .

   remarque :

   les calculs avec x = 5 conduiraient à la même Recette ( 27500 € ),

   et l' extremum "mathématique" précis est S( 5,5 ; 27562,5 )

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Merci de visiter FRstudy.me. Nous sommes là pour vous aider avec des réponses claires et concises.