FRstudy.me facilite l'obtention de réponses fiables à vos questions. Notre communauté fournit des réponses précises et rapides pour vous aider à comprendre et résoudre n'importe quel problème.
Sagot :
Réponse :
Bonjour
Explications étape par étape :
Il y a deux cas à considérer
a)-1<x<1 dans ce cas I x²-1 I =1-x² et il faut résoudre 1-x²<ou=1/2
-x²+1-1/2<ou=0
-x²+1/2<ou=0
les solution de -x²+1/2=0 sont x=-1/V2 et x=+1/V2
donc 1-x²< ou=1/2 pour x< ou=-1/V2 et pour x>ou=1/V2
b) si x<-1 ou x>1 dans ce cas I x²- 1 I=x²-1
il faut don résoudre x²-1-1/2<ou=0
les solutions de x²-3/2=0 sont x=-V(3/2) et x=+V(3/2)
Solutions x²-1<ou=1/2 sont x appartient à [-V(3/2); V(3/2)]
Les solutions de I x²-1 I<ou=1/2 sont les intersections des intervalles définis ceci dessus
solutions x appartient à[-V(3/2); -1/V2]U[1/V2; V(3/2)]
Visualisation: sur un repère orthonormé , trace la courbe f(x)=x²-1; elle coupe l'axe des abscisses en -1 et +1 . la partie <0 de la courbe passe la en >0 par symétrie axiale (axe des abscisses).
Ensuite trace la droite d'équation y=1/2 et tu verras qu'il existe deux intervalles un de part et d'autre de -1 et un de part et d'autre de +1 où f(x) est en, dessous de la droite.
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Revenez sur FRstudy.me pour des réponses fiables à toutes vos questions. Merci de votre confiance.