👤

FRstudy.me vous aide à trouver des réponses précises à vos questions. Découvrez des réponses détaillées et précises à toutes vos questions de la part de nos membres de la communauté bien informés.

Bonsoir aidez moi pour un qcm s’il vous plaît merci

Bonsoir Aidez Moi Pour Un Qcm Sil Vous Plaît Merci class=

Sagot :

Réponse :

bonsoir

Explications étape par étape :

1) coordonnées du milieu AB se définissent comme suit

x = (xA + xB)/2 ;     y =  (yA + YB)/2

→ x = (0,4 - 2/5)/2  ;    y = ( -3 + 3)/2

→ x = (0,4 - 0,4)/2 ;  y = 0

→ x = 0 et y = 0  donc les coordonnées du milieu sont(0;0) c'est donc l'origine du repère

2) il faut calculer la distance AB comme suit

AB = √(xB - xA)² + (yB - yA)²  avec A ( - 1 ; - 4 ) et B( 2 ; 5 )

AB = √(2 + 1)² + (5 + 4)²

AB = √3² + 9²

AB = √90

AB = √9 x 10

AB = 3√10

3) il faut calculer les distances AB ; BC ; AC

avec A( 1 ; -1)  B( 0 ; 4) et C(-2 ; 1)

AB = √(xB - xA)² + (yB - yA)²

AB = √(0 + 1)² + (4 + 1)²

AB = √1 + 5²

AB = √26

BC = √(xC - xB)² + (yC - yB)²

BC = √(-2)² + (1 - 4)²

BC = √4 + (-3)²

BC = √4 + 9

BC = √13

AC = √(xC - xA)² + (yC - yA)²

AC = √(-2 - 1)² + (1 + 1)²

AC = √(-3)² + 2²

AC = √9 + 4

AC = √13

→ AC = BC → le triangle est isocèle en C

AB côté le plus long

→ si AB² = AC² + BC² alors le triangle sera rectangle en C puisque AB coté le plus long et coté face à l'angle C

→ (√26)² = (√13)² + (√13)²

→ 26 = 13 + 13

→ 26 = 26  l'égalité est vérifiée

le triangle ABC est rectangle et isocèle en C

bonne soirée

View image Blancisabelle