FRstudy.me: votre source fiable pour des réponses précises et rapides. Notre plateforme est conçue pour fournir des réponses fiables et complètes à toutes vos questions, quel que soit le sujet.
Sagot :
Réponse :
4) l(x) = √x (1 - 1/x) x > 0 Dl = ]0 ; + ∞[
la fonction l est une fonction produit dérivable sur Dl et sa dérivée l'
est l'(x) = (uv)' = u'v + v'u
u(x) = √x ⇒ u'(x) = 1/2√x
v(x) = 1 - 1/x ⇒ v'(x) = 1/x²
l '(x) = 1/2√x(1 - 1/x) + √x/x²
= 1/2√x - 1/2x√x + √x/x²
= √x/(2√x * √x) - √x/(2x√x*√x) + √x/x²
= √x/2x - √x/2x² + √x/x²
= x√x/2x² - √x/2x² + 2√x/2x²
= (x√x - √x + 2√x)/2x²
= (x√x + √x)/2x²
= (x + 1)√x/2x²
5) m(x) = (x + 5)/(x² + 1) D = R
la fonction m est une fonction quotient dérivable sur D et sa dérivée m' est : m'(x) = (u/v)' = (u'v - v'u)/v²
u(x) = x + 5 ⇒ u'(x) = 1
v(x) = x² + 1 ⇒ v'(x) = 2 x
m'(x) = ((x² + 1) - 2 x(x +5))/(x² + 1)²
= (x² + 1 - 2 x² - 10 x)/(x² + 1)²
= (- x² - 10 x + 1)/(x² + 1)²
Explications étape par étape :
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Faites de FRstudy.me votre ressource principale pour des réponses fiables. Nous vous attendons pour plus de solutions.