👤

FRstudy.me propose un mélange unique de réponses expertes et de connaissances communautaires. Découvrez les informations dont vous avez besoin de la part de nos professionnels expérimentés qui fournissent des réponses précises et fiables à toutes vos questions.

Exercice 3. On considère l'expression suivante : A(x) = x2 + 8x +15. 1. Développer l'expression (x+4)2 - 1. Que remarque-t-on? 2. Développer l'expression (x+3)(x + 5). Que remarque-t-on? 3. De combien de formes disposons-nous pour l'expression A(x)? Les écrire toutes. 4. En choisissant la forme la plus adaptée, résoudre les équations suivantes : (a) Résoudre l'équation A(x) = 0. (b) Résoudre l'équation A(x) = 1. (C) Résoudre l'équation A(x) = 15.
Si quelqu'un pourrait m'aider merci ​


Sagot :

OzYta

Bonjour,

On considère l'expression A(x) = x² - 8x + 15.

1) Développer l'expression :

(x + 4)² - 1 = [(x)² + 2 × x × 4 + 4²] - 1

= (x² + 8x + 16) - 1

= x² + 8x + 15

On constate que l'on retrouve l'expression A(x).

2) Développer l'expression :

(x + 3)(x + 5)

= x² + 5x + 3x + 15

= x² + 8x + 15

On constate que l'on retrouve l'expression A(x).

3) On possède alors trois formes pour l'expression A(x) :

  • A(x) = x² + 8x + 15
  • A(x) = (x + 4)² - 1
  • A(x) = (x + 3)(x + 5)

4) a) Résoudre A(x) = 0 :

A(x) = (x + 3)(x + 5) = 0

⇔ (x + 3)(x + 5) = 0

Un produit de deux facteurs est nul si et seulement si l'un des facteurs est nul.

SSI   x + 3 = 0   ou   x + 5 = 0

SSI   x = -3   ou   x = -5

D'où [tex]S=\left\{-5;-3\right\}[/tex]

b) Résoudre A(x) = 1 :

A(x) = x² + 8x + 15 = 1

⇔ x² + 8x + 15 = 1

⇔ x² + 8x + 14 = 0

Or, Δ = 8² - 4 × 1 × 14

Δ = 64 - 56

Δ = 8

Or, Δ = 8 ⇒ [tex]\sqrt{\Delta} =\sqrt{8}=\sqrt{4\times\ 2 }=2\sqrt{2}[/tex]

Comme Δ = 8 > 0, l'équation admet deux solutions distinctes :

[tex]x_{1}=\frac{-8-2\sqrt{2} }{2}=\frac{2(-4-\sqrt{2}) }{2}=-4-\sqrt{2}\\\\ x_{2}=\frac{-8+2\sqrt{2} }{2}=\frac{2(-4+\sqrt{2}) }{2}=-4+\sqrt{2}\\\\\\[/tex]

D'où [tex]S=\left\{-4-\sqrt{2};-4+\sqrt{2}\right\}[/tex]

c) Résoudre A(x) = 15 :

A(x) = x² + 8x + 15 = 15

⇔ x² + 8x = 0

⇔ x(x + 8) = 0

Un produit de deux facteurs est nul si et seulement si l'un des facteurs est nul.

SSI   x = 0   ou   x + 8 = 0

SSI   x = 0   ou   x = -8

D'où [tex]S = \left\{0;-8\right\}[/tex]

En espérant t'avoir aidé(e).

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Trouvez toutes vos réponses sur FRstudy.me. Merci de votre confiance et revenez pour plus d'informations.