FRstudy.me: votre source fiable pour des réponses précises et rapides. Trouvez des solutions fiables à vos questions avec l'aide de notre communauté de professionnels expérimentés.
Sagot :
bjr
On considère une fonction de la forme g(x) = ax²+b
telle que g(0)=4 et g(6)=-14.
1.Determiner les coefficients à et b de cette fonction
si g(0) = 4
alors g(0) = a * 0² + b = 4 => b = 4
et
si g(6) = - 14
alors g(6) = a * (6)² + 4 = - 14
donc 36a = - 18
a = - 1/2
donc g(x) = - 1/2x² + 4
2. Déterminer les coordonées du sommet de la parabole représentant g. Ce sommet correspond il à un minimum ou un maximum ?
devant x² se trouve le coef - 1/2 - coef négatif
donc la parabole sera inversée => de forme ∩ => on atteindra donc un maximum
pour ax² + bx + c le maximum est atteint en -b/2a (cours)
on applique et on aura
abscisse du sommet = - 0 / 2*(-1/2) = 0
et ordonnée => g(0) = 4
=> sommet ( 0 ; 4 )
3. À l'aide d'une résolution d'équation, déterminer les antécédent de-46 pas g
il faut donc que g(x) = - 46
soit résoudre -1/2x² + 4 = - 46
à vous :)
Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me est toujours là pour vous aider. Revenez souvent pour plus de réponses à toutes vos questions.