👤

Découvrez de nouvelles perspectives et obtenez des réponses sur FRstudy.me. Rejoignez notre communauté pour recevoir des réponses rapides et fiables à vos questions de la part de professionnels expérimentés.

Bonsoir je n’ai pas bien compris cet exercice
Soit f la fonction définie sur R par : f(x) = 9(x + 5)2 + 7
1. Montrer que pour tout x appartient à R, f(x) supérieur ou égal à 7
2. En déduire que f admet un minimum sur R


Sagot :

Bonsoir :))

  • Question 1

[tex]D\'emontrons\ que\ f(x)\ge7\ \ \ \forall x\in\mathbb R:\\\\\Leftrightarrow 9(x+5)^{2}+7\ge7\\\Leftrightarrow 9(x+5)^{2}\ge0\\\\On\ s'arr\^ete,\ car\ l'\'egalit\'e\ est\ vraie.\\\\\forall x\in\mathbb R,\ x^{2}\ge0\\Donc\ (x+5)^{2}\ge0\ aussi.\\\\Donc\ \forall x\in\mathbb R,\ f(x)\ge7.[/tex]

  • Question 2

[tex]Un\ polyn\^ome\ P(x)=ax^{2}+bx+c\ peut\ s'\'ecrire\ sous\ la\ forme\ canonique:\\P(x)=a(x-\alpha)^{2}+\beta\\\\On\ dit\ que\ P(x)\ admet\ un\ extremum\ (maximum\ ou\ minimum)\ au\ point\\M(\alpha;\beta).\\\\Si\ a>0,\ le\ point\ M(\alpha;\beta)\ est\ un\ minimum.\\Si\ a<0,\ le\ point\ M(\alpha;\beta)\ est\ un\ maximum.\\\\f(x)=9(x+5)^{2}+7\ est\ \'ecrit\ sous\ la\ forme\ canonique.\\\\a=9>0,\ donc\ f\ admet\ bien\ un\ minimum.\\Le\ point\ M(-5;7)\ est\ le\ minimum\ de\ la\ fonction\ f.[/tex]

Espérant que ceci te conviendra, n'hésite pas à revenir vers moi pour des explications supplémentaires. Bon courage. :))

Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Chaque réponse que vous cherchez se trouve sur FRstudy.me. Merci de votre visite et à très bientôt.