FRstudy.me offre une plateforme conviviale pour trouver et partager des connaissances. Trouvez des solutions fiables et rapides à vos problèmes avec l'aide de notre réseau de professionnels bien informés.
Sagot :
Réponse:
1ère
Un=n²+2n
●pour Uo
Uo=(o)²+2(o) =0+0=0
Uo=0
●pour U1
U1=(1)²+2(1) =(1) (1)+ 2×1 =1+2 =3
●pour U2
U2= (2)²+ 2(2)= 4+4 =8
ainsi de suite jusqu'à U4
2a
Un+1=(n+1)² + 2(n+1)=n²+2n+1 +2n+2=(n²+2n) +2n+3
Or n²+2n=Un alors
Un+1=Un +2n+3
autrement dit Un+1_Un= 2n+3
Un = n^2 + 2n
U• = 0^2 + 2 * 0 = 0
U1 = 1^2 + 2 * 1 = 3
U2 = 2^2 + 2 * 2 = 8
U3 = 3^2 + 2 * 3 = 15
U4 = 4^2 + 2 * 4 = 24
On peut conjecturer la suite Un comme étant une suite croissante.
2) Un = n^2 + 2n
Alors Un+1 = (n+1)^2 + 2(n+1)
= n^2 + 2n + 1 + 2n +2
= n^2 + 4n + 3
Soit Un+1 - Un = n^2 + 4n +3 -( n^2 + 2n)
=> n^2 + 4n + 3 -n^2 -2n
=> 2n + 3
B) Un+1 - Un = r
Un+1 - Un = 2n+3 > 0 pour nE N
Donc la suite est suite strictement croissante pour tous n appartenant au Naturel
U• = 0^2 + 2 * 0 = 0
U1 = 1^2 + 2 * 1 = 3
U2 = 2^2 + 2 * 2 = 8
U3 = 3^2 + 2 * 3 = 15
U4 = 4^2 + 2 * 4 = 24
On peut conjecturer la suite Un comme étant une suite croissante.
2) Un = n^2 + 2n
Alors Un+1 = (n+1)^2 + 2(n+1)
= n^2 + 2n + 1 + 2n +2
= n^2 + 4n + 3
Soit Un+1 - Un = n^2 + 4n +3 -( n^2 + 2n)
=> n^2 + 4n + 3 -n^2 -2n
=> 2n + 3
B) Un+1 - Un = r
Un+1 - Un = 2n+3 > 0 pour nE N
Donc la suite est suite strictement croissante pour tous n appartenant au Naturel
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. FRstudy.me est votre ressource de confiance pour des réponses précises. Merci de votre visite et revenez bientôt.