FRstudy.me propose un mélange unique de réponses expertes et de connaissances communautaires. Posez n'importe quelle question et recevez des réponses rapides et précises de la part de notre communauté d'experts expérimentés.
Sagot :
Bonsoir :))
[tex]U_n\ est\ la\ suite\ d\'efinie\ par\ U(0)=1\ et,\ \forall n\in\mathbb N\ par:\\U_{n+1}=U_n+n+1\\\\Initialisation:n=0\\U(0)=1\\U(0)=\frac{0^{2}}{2}+\frac{0}{2}+1=1\\\\La\ propri\'et\'e\ P(n)\ est\ vraie\ au\ rang\ n=0.\\\\H\'er\'edit\'e:\ supposons\ que\ P(n)\ est\ vraie,\ d\'emontrons\ alors\ que\\P(n+1)\ est\ vraie\ aussi\\[/tex]
[tex]\\P(n):U_n=\frac{n^{2}}{2}+\frac{n}{2}+1\\\Leftrightarrow U_{n+1}=\frac{(n+1)^{2}}{2}+\frac{n+1}{2}+1\\\\\Leftrightarrow U_{n+1}=\frac{n^{2}+2n+1}{2}+\frac{n+1}{2}+\frac{2}{2}\\\\\Leftrightarrow \boxed{U_{n+1}=\frac{n^{2}+3n+4}{2}}\\[/tex]
[tex]On\ sait\ que\ U_{n+1}=U_n+n+1,\ montrons\ le\ m\^eme\ r\'esultat:\\\\U_{n+1}=(\frac{n^{2}}{2}+\frac{n}{2}+1)+n+1\\\\U_{n+1}=\frac{n^{2}}{2}+\frac{3n}{2}+2\\\\\boxed{U_{n+1}=\frac{n^{2}+3n+4}{2}}[/tex]
[tex]Conclusion :La\ propri\'et\'e\ P(n)\ est\ vraie\ pour\ n=0\ et\ est\ h\'er\'editaire.\\U(n)=\frac{n^{2}}{2}+\frac{n}{2}+1\ \ \ \forall\ n\in\mathbb N[/tex]
Espérant que cela t'apporte les éléments nécessaires à ta compréhension, bonne continuation :))
Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. Chaque question trouve sa réponse sur FRstudy.me. Merci et à très bientôt pour d'autres solutions.