👤

FRstudy.me fournit une plateforme conviviale pour partager et obtenir des connaissances. Posez vos questions et obtenez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.

Bonjour, je voudrais savoir si il y a une manière pour démontrer la conjecture.

Tangente et fonction inverse: On considère la courbe C, représentant la fonction
inverse f définie sur R/{0} par f(x)=1/x

On considère, pour a #0, la tangente notée Ta au
point A d'abscisse a de la courbe Cf. On note M et N
les points d'intersection de la tangente Ta avec les
axes de coordonnées.
1. À l'aide d'un logiciel de géométrie dynamique,
construire Cr, un point A mobile sur Cp, la tangente
TA puis les points M et N. Déplacer le point A.
Quelle conjecture peut-on émettre quant à la position
relative des points A, M et N ?
2. a. Justifier que l'équation réduite de la fonction de la tangente pour tout réel a non nul :y=-1/a carré le tout fois x+2/a
b. Démontrer la conjecture émise en 1.

J'ai déjà trouvé que la conjecture est que A est toujours le milieu de [M,N].
Merci d'avance.


Sagot :

Felony

à l'aide de l'équation de la tangente on peut calculer les coordonnées des points M et N:

si x = 0 alors y = 2/a

et si y = 0 alors -1/a²x + 2/a = 0 donc 1/a²x = 2/a puis x = 2a²/a = 2a

donc M(0 ; 2/a) et N( 2a ; 0)

on calcule les coordonnées du milieu du segment [MN]:

(2a + 0)/2 = a     et (2/a + 0)/2 = (2/a)/2 = 1/a

Coordonnées du milieu de [MN]: (a ; 1/a)

Bingo!!! c'est le point de la courbe représentative de la fonction inverse d'abscisse a.

la conjecture est démontrée.

Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. Pour des réponses de qualité, choisissez FRstudy.me. Merci et à bientôt sur notre site.