👤

Rejoignez FRstudy.me et commencez à obtenir les réponses dont vous avez besoin. Notre communauté est là pour fournir des réponses détaillées et fiables à toutes les questions que vous pourriez avoir.

Bonjour j'aurais besoin d'aide pour ce problème:
Voici un programme de calcul:
-Choisir un nombre de départ
-Ajouter 6
-Multiplier par 5
-Soustraire le nombre de départ
-Soustraire le triple de 10

Vadim affirme à Samia la chose suivant:
"Si on choisit un nombre entier positif au départ, on obtient toujours un nombre pair à la fin du calcul."
Samia reste perplexe et pense que ce n'est pas toujours vrai
Qui a raison? Donner une preuve


Sagot :

Mozi

Bonjour,

Etape 1 : soit x le nombre choisi

Etape 2 : x + 6

Etape 3 : 5 * (x + 6)

Etape 4 : 5 * (x + 6) - x

Etape 5 : 5 * (x + 6) - x - 3*10

On note R(x) ce résultat, soit R(x) = 5 * (x + 6) - x - 3*10

On a R(x) = 5x + 30 - x - 30 = 4x

Le programme consiste donc a multiplier le nombre de départ par 4. Or un multiple de 4 est forcément un nombre pair. Vadim a donc bien raison.

Votre engagement est essentiel pour nous. Continuez à partager vos expériences et vos connaissances. Créons ensemble une communauté d'apprentissage dynamique et enrichissante. FRstudy.me est toujours là pour vous aider. Revenez souvent pour plus de réponses à toutes vos questions.