👤

Connectez-vous avec une communauté de passionnés sur FRstudy.me. Obtenez des réponses rapides et précises à vos questions grâce à notre communauté d'experts toujours prêts à aider.

Bonsoir

Pouvez vous m’aider svp pour cet exo.
Merci beaucoup


Bonsoir Pouvez Vous Maider Svp Pour Cet Exo Merci Beaucoup class=

Sagot :

Bonjour Elo :)

  • Question a)

[tex](E):y'=x^{3}+2x^{2}+x+2\ sur\ \mathbb R\\\\\text{Rappel : }\\(x^{n})'=nx^{n-1}\\\text{Si on a une fonction }f(x)=x^{n}\text{, alors sa primitive est }F(x)=\frac{1}{n+1}x^{n+1}[/tex]

[tex](\frac{1}{4}x^{4})'=x^{3}\ \ (\frac{2}{3}x^{3})'=2x^{2}\ \ (\frac{1}{2}x^{2})'=x\ \ (2x)'=2\ \ et\ (1)'=0[/tex]

[tex]Donc,f(x)\ est\ solution\ de\ (E)[/tex]

  • Question b)

[tex](x^{2}+1)(x+2)=x^{2}\times x+x^{2}\times 2+1\times x+1\times 2\\\Rightarrow x^{3}+2x^{2}+x+2[/tex]

  • Question c)

[tex]\text{La fonction }f\text{ semble \^etre d\'ecroissante pour }x\in]-\infty;-2]\\\text{La fonction }f\text{ semble \^etre croissante pour }x\in[-2;+\infty[[/tex]

  • Question d)

[tex]f'(x)=(x^{2}+1)(x+2)\\f'(x)=0\text{ quand :}\\\\x+2=0\ \ \Leftrightarrow\ \ x=-2\\x^{2}+1>0\\f'(x)\text{ d\'epend du signe de }x+2\\\textbf{Voir ci joint tableau de signe et variation}[/tex]

N'hésite pas pour les questions si besoin

Bonne soirée ! :)

View image Micka44
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Revenez sur FRstudy.me pour des réponses fiables à toutes vos questions. Merci de votre confiance.