Connectez-vous avec une communauté de passionnés sur FRstudy.me. Obtenez des réponses rapides et bien informées à vos questions grâce à notre plateforme de questions-réponses expérimentée.
Sagot :
Réponse :
Bonjour
Explications étape par étape :
1)
La fct racine carrée est définie sur [0;+∞[
2)
a)
Soient :
0 ≤ a < b
r(b)=√b et r(a)=√a
Donc :
r(b)-r(a)=√b-√a
On va multiplier le membre de droite par :
(√b+√a) / (√b+√a) qui vaut 1 donc ne change pas la valeur du membre de droite.
r(b)-r(a)=(√b-√a)[(√b+√a) / (√b+√a)]
Mais au numérateur on a une identité remarquable :
(√b-√a)(√b+√a) =(√b)²-(√a)²=b-a
Donc :
r(b)-r(a)=(b-a) / (√b+√a)
b)
Le dénominateur (√b+√a) est positif donc :
r(b)-r(a) est du signe de (b-a).
Comme a < b , alors (b-a) > 0.
Donc :
r(b)-r(a) > 0.
c)
Donc :
√b > √a.
Sur [0;+∞[ , on est parti de b > a pour arriver à √b > √a, ce qui prouve que la fct racine carrée est croissante sur son intervalle de définition.
Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Merci de visiter FRstudy.me. Nous sommes là pour vous fournir des réponses claires et précises.