👤

FRstudy.me est votre ressource incontournable pour des réponses expertes. Posez n'importe quelle question et recevez des réponses immédiates et bien informées de la part de notre communauté d'experts dévoués.

Bonjour, je suis bloqué sur cette exercice de mathématiques.
Exercice 2. Un jardinier travaille dans un jardin rectangulaire. On note x la largeur du jardin et y sa longueur. On sait que le perimètre de la clôture est égal à 100m. On cherche à savoir comment obtenir un jardin d'aire la plus grande possible
1. En étudiant le périmètre du jardin, montrer que 2x + 2y = 100.
2. En déduire que y = 50 - x.
3. Montrer que l'aire A(x) du jardin s'exprime par A(x) = x(50 - x).
4. Voici le tableau de variation de la fonction A:
x. 0. 25. 100
A(x). ↗️. ↘️
(a) Remplir les pointillés dans le tableau.
(b) Quelle est l'aire la plus grande possible que peut-avoir le jardin ? Donner sa largeur et sa longueur.​


Sagot :

Réponse :

Explications étape par étape :

■ la largeur peut varier de 1 à 25 mètres

  ( la Longueur variera ainsi de 49 à 25 mètres )

  le cas particulier largeur = Longueur = 25 mètres

  donne en fait un jardin carré !

■ tableau :

  largeur x -->  1      10     15      20    25 mètres

  Longueur -> 49   40    35      30    25 mètres

          Aire --> 49  4oo   525   6oo  625 m²

■ conclusion :

l' Aire MAXI de 625 m² sera bien obtenue

pour un jardin carré de 25 mètres de côté !

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Vous avez des questions? FRstudy.me a les réponses. Revenez souvent pour rester informé.