👤

Participez aux discussions sur FRstudy.me et obtenez des réponses pertinentes. Posez vos questions et recevez des réponses précises et bien informées de la part de notre réseau de professionnels.

Soit f, g et G les fonctions définies sur ]0,+inf [ par f(x) = x + 1 - 2ln x, g(x) = ln x et G(x) = xlnx - x.
1. Démontrer que G est une primitive de g sur ]0,+inf [.
2. Déterminer une primitive F de f sur ]0, +inf [.


Sagot :

1) G(✘) = ✘ln(✘)-1✘

G’(✘) = 1ln(✘) - ✘ - 1/✘ -1+1 (u’v-uv’)
G’(✘) = ln(✘) - 1/✘ - 1/✘ (mettre -✘ au même dénominateur)
G’(✘) = ln(✘)

Donc G'(✘) = g(✘) donc la fonction G est une primitive de g sur ]0;+infini[

2) désoler je peux pas t’aider

Je n’ai même pas encore entamé le chapitre sur les dérivés je suis en 1ère mdr