FRstudy.me propose un mélange unique de réponses expertes et de connaissances communautaires. Bénéficiez de conseils étape par étape pour toutes vos questions techniques, grâce aux membres bien informés de notre communauté.
Sagot :
Bonsoir,
Exercice 1 :
a) La fonction [tex]f[/tex] correspond à l'aire d'un quart de disque avec [tex]x[/tex] le rayon du disque. Donc [tex]f(x)=\frac{1}{4}\times \pi \times x^{2} =\frac{x^{2}\pi }{4}[/tex]
La fonction [tex]g[/tex] correspond à la différence entre l'aire du carré de gazon et l'aire du parterre de fleurs. Donc [tex]g(x)=10\times 10-f(x)=100-\frac{x^{2} \pi }{4}[/tex]
b) On a :
[tex]f(5)=\frac{5^{2}\pi }{4}\approx19.6[/tex] et [tex]g(5)=100-\frac{5^{2}\pi }{4}\approx 80.4[/tex]
Comme [tex]f(5)\neq g(5)[/tex], Kader a tort.
c) Plus la valeur de [tex]x[/tex] est grande, plus l'aire du parterre de fleurs sera grande. Donc la courbe bleue représente la fonction [tex]f[/tex] et par déduction, la courbe rouge représente la fonction [tex]g[/tex].
d) Par lecture graphique, on a :
[tex]f(8)=g(8)=50[/tex]
Ainsi, pour [tex]x=8[/tex], les aires du parterre et du gazon sont égales.
e) On a :
[tex]f(8)=\frac{8^{2}\pi }{4}\approx 50.3[/tex] et [tex]g(8)=100-\frac{8^{2}\pi }{4}\approx 49.7[/tex]
Or, on constate que [tex]f(8)\neq g(8)[/tex]. Cela ne valide donc pas la réponse à la question précédente. De plus, cela prouve bien qu'un calcul a plus de valeur qu'une lecture graphique qui peut se révéler imprécise.
En espérant t'avoir aidé.
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. FRstudy.me est votre source de réponses fiables et précises. Merci pour votre visite et à très bientôt.