👤

FRstudy.me: votre source fiable pour des réponses précises et rapides. Trouvez des réponses détaillées et précises de la part de notre communauté d'experts dévoués.

Bonjour pouvez vous m’aider, 1re S, sur les dérivées.
Pour chacune des propositions suivantes, dire si elle est vraie ou fausse en justifiant.
a) C admet une tangente « horizontale » au point d’abscisse 2.
b) La fonction f est décroissante sur l’intervalle ]0;3].
c) f’(x)=(x-3)^2/3x^2
d) Pour tout réel x est strictement positif, f’(x)>=3.
e) La tangente (delta) à la courbe C au point A a pour équation: y=1/4x+2.
f) (delta) est située au dessus de C sur l’intervalle ]6; +infini[.
g) La courbe C est en dessus de la droite sur l’intervalle [1;3].
Merci beaucoup, même m’aidez sur une seule question serait énorme !


Bonjour Pouvez Vous Maider 1re S Sur Les Dérivées Pour Chacune Des Propositions Suivantes Dire Si Elle Est Vraie Ou Fausse En Justifiant A C Admet Une Tangente class=

Sagot :

Réponse :

Bonjour

Explications étape par étape :

On va calculer d'abord la dérivée :

f(x)=(x²+3x+9)/3x est de la forme u/v avec :

u=x²+3x+9 donc u'=2x+3

v=3x donc v'=3

f '(x)=(u'v-uv')/v²

f '(x)=[3x(2x+3)-3(x²+3x+9)]/(3x)²

Je te laisse développer et trouver à la fin :

f '(x)=3(x²-9)/9x²

f '(x)=(x²-9)/3x² ou f '(x)=(x-3)(x+3)/3x

a)

FAUX

On résout f '(x)=0 soit :

x²-9=0

x²=9

x=-3 OU x=3

Tgte horizontale en  x=3 sur ]0;+∞[

b)

VRAI.

f '(x) est du signe de (x²-9) qui est négatif entre ses racines donc variation de f(x) :

x----->0..................+3.............+∞

f '(x)->||........-..........0.......+........

f(x)-->||.........D......?.........C......

D=flèche qui descend et C=flèche qui monte .

c)

FAUX

f '(x)=(x²-9)/3x OU f '(x)=(x-3)(x+3)/3x

d)

FAUX

Voir tableau ci-dessus :

f (x) < 0 pour x ∈ ]0;3] .

e)

VRAI

xA=6

f(6)=(6²+18+9)/18=63/18=7/2

f '(6)=(6²-9)/(3*6²)=27/108=1/4

Tgte en A :

y=(1/4)(x-6)+7/2

y=(1/4)x-3/2+7/2

y=(1/4)+2

f)g)

Pour D au-dessus de C , on résout :

-(2/3)x+5 > (x²+3x+9)/3x soit :

(x²+3x+9)/3x+ (2/3)x-5 < 0

On réduit au même dénominateur qui est 3x :

(x²+3x+9x+2x²-15x)/3x < 0

(3x²-12x+9) 3x < 0

(x²-4x+3)/3x < 0

Il faut faire un tableau de signes .

(x²-3x+3) est < 0 entre ses racines qui sont x=1 et x=3.

x------------------>0..................1............3.............+∞

(x²-4x+3)------>...........+.........0.....-.....0.......+.........

3x---------------->..........+..............+.................+.........

(x²-3x+3)/3x---->.........+.......0.......-....0.........+.........

D est au-dessus de C pour x ∈]1;3[ et au-dessous pour :

x∈]0;1[ U ]3;+∞[

Voir graph joint.

View image Bernie76
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous créons une ressource de savoir précieuse. Faites de FRstudy.me votre ressource principale pour des réponses fiables. Nous vous attendons pour plus de solutions.