👤

Obtenez des conseils d'experts et des connaissances communautaires sur FRstudy.me. Posez vos questions et recevez des réponses précises et bien informées de la part de notre réseau de professionnels.

Sur un repère orthogonal on considère les points A(-4;5) B(-2;1) C(-1;-1)
1/ montrer que P(-2;5) appartient au cercle de diamètre [AB].

Merci de m'aider à résoudre cet exercice <3


Sagot :

Réponse :

Explications étape par étape :

Si [AB] est le diamètre du cercle alors le point D est le centre du cercle et donc le milieu de [AB]

[tex]X_{D} =\frac{X_{A} +X_{B} }{2} =\frac{-4+(-2)}{2} =\frac{-6}{2} =-3\\Y_{D} =\frac{Y_{A} +Y_{B} }{2} =\frac{5+1}{2} =\frac{6}{2} =3[/tex]
Le point D a pour coordonnées D( -3; 3)

il faut prouver que AD = DP

[tex]d(A,D)=\sqrt{(X_{D} -X_{A})^{2} +(Y_{D} -Y_{A})^{2} } \\d(A,D)=\sqrt{(-3 -(-4))^{2} +(3 -5)^{2} }\\d(A,D)=\sqrt{(-3 +4)^{2} +(3 -5)^{2} }\\d(A,D)=\sqrt{(1)^{2} +(-2)^{2} }\\d(A,D)=\sqrt{1+4 }\\d(A,D)=\sqrt{5 }[/tex]

[tex]d(P,D)=\sqrt{(X_{D} -X_{P})^{2} +(Y_{D} -Y_{P})^{2} } \\d(P,D)=\sqrt{(-3 -(-2))^{2} +(3 -5)^{2} }\\d(P,D)=\sqrt{(-3 +2)^{2} +(-2)^{2} }\\d(P,D)=)\sqrt{(-1)^{2}+(-2)^{2} } \\d(P,D)=\sqrt{1+4 }\\d(P,D)=\sqrt{5 }[/tex]

Conclusion AD =PD donc le point P appartient au cercle de diamètre AB