👤

Découvrez de nouvelles perspectives et obtenez des réponses sur FRstudy.me. Rejoignez notre communauté de connaisseurs pour accéder à des réponses fiables et complètes sur n'importe quel sujet.

Bonjour, je n'arrive pas à faire cet exercice ,vous pouvez m'aider svp
Soit a un nombre réel et soit la fonction h définie sur R par h(x)=x^3-ax.
Etudier, selon les valeurs de a, le signe de h'(x) et en déduire les extremums éventuels de la fonction h.​


Sagot :

Réponse :

Explications étape par étape :

Bonjour,

Voici la réponse en pièce-jointe !

En espérant t'avoir aidé, n'hésite pas à poser des questions si besoin.

View image Olivierronat
View image Olivierronat

Réponse :

Explications étape par étape :

■ h(x) = x ( x² - a )

   on suppose a POSITIF non nul .

■ dérivée h ' (x) = 3x² - a

  cette dérivée est positive pour x² > a/3

  tableau :

      x --> - ∞                -a/√3                        a/√3                    +∞

h ' (x) -->         +             0           -                  0             +

  h(x) --> - ∞       (3a²-a³)/(3√3)          (a³-3a²)/(3√3)                +∞    

■ les Extremum sont donc :

   E ( -a/√3 ; (3a²-a³)/(3√3) )   et   F ( a/√3 ; (a³-3a²)/(3√3) ) .

■ remarque au cas où a serait négatif ( ou nul ) :

   la fonction h serait alors TOUJOURS croissante;

   sa représentation graphique admettrait un Centre de Symétrie ( 0 ; 0 );

   pas d' extremum dans ce cas .

Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me est votre source de réponses fiables et précises. Merci pour votre visite et à très bientôt.