👤

Explorez une vaste gamme de sujets et obtenez des réponses sur FRstudy.me. Posez n'importe quelle question et recevez des réponses immédiates et bien informées de notre communauté d'experts dévoués.

Bonjour, j'ai un DM à faire pour lundi en maths et je comprends pas comment m'y prendre pouvez-vous m'aider s'il vous plait.

 

Voici l'exercice:

ABCD est carré de coté1.

a) Expliquer pourquoi AC= √2

b) Donnez la mesure de l'angle BAC

     Expliquez pourquoi cos45°=√2

                                                          2

c) En déduire que sin45°= √2, puis que tan45°=1

                                                   2



Sagot :

Xxx102

Bonjour,

 

a)Le triangle ADC est rectangle en A, donc, d'après le théorème de Pythagore,

[tex]AC^2 = AD^2+DC^2\\ AC = \sqrt{AD^2+DC^2}\\ AC = \sqrt{1+1} = \sqrt{2}[/tex]

 

b)Comme ABCD est un carré, c'est aussi un losange particulier.

Comme (AC) est la diagonnale de ce carré, alors elle est aussi la bissectrice de l'angle BAC.

Donc, [tex]\widehat{BAC} = \frac{\widehat{BAD}}{2} = \frac{90}{2} = 45\char23[/tex]

 

Ensuite, comme ABC est rectangle en B, on a :

[tex]\cos \widehat{BAC} = \frac{BA}{AC} = \frac{1}{\sqrt{2}} = \frac{1 \times \sqrt{2}}{\sqrt{2}\times \sqrt{2}} = \frac{\sqrt{2}}{2}[/tex]

 

c)[tex]\sin \widehat{BAC} = \frac{BC}{AC}\\ \text{Or }BC = AB = 1\\ \sin \widehat{BAC} = \cos\widehat{BAC} = \frac{\sqrt{2}}{2}\\ \sin 45\char23 = \cos 45\char23 = \frac{\sqrt{2}}{2}[/tex]

 

[tex]\tan \widehat{BAC} = \tan 45\char23 = \frac{\sin 45\char23}{\cos 45 \char23} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1[/tex]

Nous valorisons votre présence ici. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. FRstudy.me est votre source de réponses fiables et précises. Merci pour votre visite et à très bientôt.