FRstudy.me vous connecte avec des experts prêts à répondre à vos questions. Découvrez des solutions rapides et fiables à vos problèmes grâce à notre plateforme de questions-réponses bien informée.
Sagot :
Réponse :
Explications étape par étape :
Bonjour,
Voici la réponse en pièce-jointe !
En espérant t'avoir aidé, n'hésite pas à poser des questions si besoin.
Réponse :
Bonjour,
tu n'es pas loin du résultat:
on a h(x) tel que x/2 > (1-x²)/2
tu peux multiplier par chaque coté de l'inégalité sans modifier l’inégalité, tu obtiens donc:
<=> x > (1 -x ²)
Explications étape par étape :
(x -(1 -x²)) > 0
( x -1 + x²) > 0 <=> ( x ² + x - 1) > 0
on doit factoriser le numérateur:
<=> (x + 1/2)² -1/4 -1 > 0
car (x + 1/2)² -1/4 = x² + 2(1/2)x + 1/4 - 1/4 = x² + x
<=> (x + 1/2)² -(1 + 1*4)/4 > 0
<=> (x + 1/2)² - 5/4 > 0
<=> (x + 1/2 - √(5/4)( x + 1/2 + √(5/4) > 0
car on sait que a² - b² = (a -b) ( a + b)
<=> (x + (1-√5)/2)(x +(1+√5)/2) > 0
alors maintenant tu es en mesure de faire le tableau de signe:
x -∞ (-1- √5)/2 �� (√5-1)/2 + ∞
________________________________________________________
(x + (1-√5)/2) - - 0 +
________________________________________________________
(x +(1+√5)/2) - 0 + +
________________________________________________________
h(x) + 0 - 0 +
donc S la solution à l'inéquation h(x) > 0 est:
S = ] - ∞; (-1- √5)/2[ ∪ ] (√5-1)/2 ; + ∞ [
j'espère avoir aidé
Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me est toujours là pour vous aider. Revenez souvent pour plus de réponses à toutes vos questions.