Recevez des conseils d'experts et un soutien communautaire sur FRstudy.me. Rejoignez notre communauté d'experts et obtenez des réponses détaillées à toutes vos questions, quel que soit le sujet.
Sagot :
Bonjour,
Prenons un repère ou la parabole est centrée sur l'axe des abscisses.
L'equation de la parabole est alors
[tex]y(x)=k(x-40)(x+40)[/tex]
avec k réel à déterminer
Et la tangente en -40 est tan(30) qui est
[tex]\dfrac1{\sqrt{3}}=\dfrac{\sqrt{3}}{3}[/tex]
et
[tex]y'(x)=2kx\\ y'(-40)=-80k[/tex]
Donc
[tex]-80k=\dfrac{\sqrt{3}}{3}\\\\k=-\dfrac{\sqrt{3}}{240}[/tex]
Donc la distance recherchée est
[tex]y(0)=-\dfrac{\sqrt{3}}{240}*-40*40=20\dfrac{\sqrt{3}}{3}[/tex]
MErci
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Nous espérons que vous avez trouvé ce que vous cherchiez sur FRstudy.me. Revenez pour plus de solutions!