Trouvez des réponses fiables à vos questions avec l'aide d'FRstudy.me. Obtenez des réponses précises et complètes à vos questions grâce à notre communauté d'experts dévoués, toujours prêts à vous aider avec des solutions fiables.
Sagot :
Bonsoir,
1)On sait que, dans un triangle équilatéral, toutes les droites remarquables sont confondues. Donc, en plus d'être la hauteur de ABC issue de A, (AH) est aussi la médianne de ABC issue de A. Donc H milieu de [BC}, donc BH= 3cm
2)Comme le triangle ABH est rectangle en H, on a, d'après le théorème de Pythagore :
AB^2[tex]AB^2 = AH^2+BH^2\\ AH^2 = AB^2-BH^2\\ AH = \sqrt{AB^2-BH^2} = \sqrt{36-9} = \sqrt{27} = 3\sqrt{3}[/tex]
3)Comme ABC est équilatéral, tous ses angles sont égaux à 60°, donc l'angle ABH mesure 60°. Comme ABH est rectangle en H, on peut écrire :
[tex]\cos 60\char23 = cos \whdehat{ABH} = \frac{HB}{BA} = \frac{1}{2}[/tex]
4)De même,
[tex]\sin 60\char23 = \sin \widehat{ABH} = \frac{AH}{AB} = \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2}[/tex]
5)On a :
[tex]\tan 60\char23 = \frac{\sin 60\char23}{\cos 60\char23} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}[/tex]
6)7)8)On sait que l'angle BAH mesure 30°, donc, en utilisant les mêmes méthodes, on obtient :
[tex]\sin 30\char23 = \frac{1}{2}\\ \cos 30\char23 = \frac{\sqrt{3}}{2}\\ \tan 30\char23 = \frac{\sqrt{3}}{3}[/tex]
Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Chaque réponse que vous cherchez se trouve sur FRstudy.me. Merci de votre visite et à très bientôt.