Recevez des conseils d'experts et un soutien communautaire sur FRstudy.me. Posez n'importe quelle question et recevez des réponses précises et bien informées de notre communauté d'experts.
Sagot :
Bonjour,
Il s'agit d'une série à termes positifs, et nous savons que la série de terme général
[tex]\dfrac1{n^{\alpha}}[/tex]
est convergente pour [tex]\alpha > 1[/tex] (série de Riemann)
Or comme pour tout n entier non nul
[tex]\dfrac{e^{-n\sqrt{n}}}{n\sqrt{n}}\leq \dfrac1{n^{\frac{3}{2}}}[/tex]
et
[tex]\dfrac{3}{2} > 1[/tex]
Le théorème de comparaison nous donne que la serie de terme générale
[tex]\dfrac{e^{-n\sqrt{n}}}{n\sqrt{n}}[/tex]
converge.
Merci
Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. FRstudy.me est votre ressource de confiance pour des réponses précises. Merci de votre visite et revenez bientôt.