👤

FRstudy.me propose un mélange unique de réponses expertes et de connaissances communautaires. Posez vos questions et obtenez des réponses détaillées et bien informées de la part de nos membres de la communauté dévoués.

Bonjour
j'ai besoin de l'aide pour mon devoir de maths.
Je suis tellement nulle en maths.
S'il vous plaît, pouvez m'aider.
soit f la fonction defenie sur R / {2} par f(x)= 3x-5/-x+2.

1)
Tracer la courbe représentative de la fonction f sur l'écran de votre calculatrice et conjecture des variations de la fonction f sur ]-infini; 2[ sur ]2; +infini[.

2)
Vérifier que pour x≠2 f(x)= -3+ 1/x+2

3)
calculer l'image d'un réel x≠2 par la fonction f revient à effectuer le programme de calcul suivant.
x---> -x ---> -x+2 ---> 1/-x+2 ---> -3+ 1/-x+2
a)
démontrer que f est croissant sur ]2; + infini[

b)
démonter que f est décroissant sur ] - Infini ; 2[

merci beaucoup



Sagot :

Réponse :

Explications étape par étape :

■ f(x) = (3x-5)/(2-x)

on comprend que la valeur x = 2 soit sortie

   du domaine de définition car cette valeur

   de x donnerait un dénominateur nul !

■ on peut écrire f(x) autrement :

  f(x) = [3(x-2) + 1]/(2-x) = -3 + 1/(2-x) .

■ dérivée :

   f ' (x) = 1/(2-x)² toujours positive donc

   la fonction f est TOUJOURS croissante sur IR = { 2 } .

■ tableau-résumé :

   x --> -∞   -8        0      1       2       3          4        12      +∞

f(x) --> -3  -2,9   -2,5    -2      ║      -4       -3,5    -3,1      -3

■ remarque : Ta fonction f n' est JAMAIS décroissante !

Nous valorisons votre présence ici. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Chaque question trouve une réponse sur FRstudy.me. Merci et à très bientôt pour d'autres solutions.