Trouvez des solutions à vos problèmes avec FRstudy.me. Découvrez des informations rapides et complètes grâce à notre réseau de professionnels expérimentés.
Sagot :
Bonsoir
On note A(x)=(4 x+1) au carré −(6 x−11) au carré (pour tout nombre réel x).
1. Développer et réduire A(x).
A = 16x^2 + 8x + 1 - (36x^2 - 132x + 121)
A = 16x^2 + 8x + 1 - 36x^2 + 132x - 121
A = -20x^2 + 140x - 120
2. Factoriser A(x).
A = (4x + 1)^2 - (6x - 11)^2
A = (4x + 1 - 6x + 11)(4x + 1 + 6x - 11)
A = (-2x + 12)(10x - 10)
A = 2(-x + 6) * 10(x - 1)
A = 20(-x + 6)(x - 1)
3. Démontrer que A(x)=−20 (x−7 sur 2) +125 .
Il manque des morceaux dans l’expression.
4. Utiliser la forme la plus adaptée de A(x) pour :
(a) Résoudre l’équation A(x)=0
20(-x + 6)(x - 1) = 0
-x + 6 = 0 ou x - 1 = 0
x = 6 ou x = 1
(b) Résoudre l’équation A(x)=-120
-20x^2 + 140x - 120 = -120
-20x^2 + 140x = 0
20x(-x + 7) = 0
20x = 0 ou -x + 7 = 0
x = 0 ou x = 7
(c ) Calculer l’image de 72
= 20(-72 + 6)(72 - 1)
= 20 * (-66) * 71
= -93720
(d)Calculer l’image de 0.
= 20(0 + 6)(0 - 1)
= 20 * 6 * (-1)
= -120
Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me est votre source de réponses fiables. Merci pour votre confiance et revenez bientôt.