👤

Trouvez des réponses à vos questions les plus pressantes sur FRstudy.me. Obtenez des réponses détaillées et bien informées de la part de notre communauté de professionnels expérimentés.

Bonjour, s'il vous plaît au moins un exercice​

Bonjour Sil Vous Plaît Au Moins Un Exercice class=

Sagot :

Mozi

Bonjour,

Ex2

1.a) f(x) = 0 ⇔ ln(x) = ½ ⇔ exp(½) = √e ≈ 1,65

b) f (x) < 0 si x < √e |  f(√e) = 0 | f (x) > 0 si  x > √e

2.a)  on a lim (x → 0+) ln(x) = -∞ et lim (x→-∞) x² - x = +∞

Donc lim (x → 0+) g(x) = +∞

b) on a lim (x → +∞) ln(x) = +∞ et lim (x→+∞) x² - x = +∞

Donc lim (x → +∞) g(x) = +∞

c) la fonction ln est continue et dérivable sur ]0 ; +∞[. il en est donc de même pour g et on a g'(x) = 2 ln(x) / x - 1/x = (2 ln(x) - 1) / x = f(x)

d) On a

f (x) < 0 si x < √e |  f(√e) = 0 | f (x) > 0 si  x > √e

Donc

g (x) est décroissante pour tout x < √e et croissante pour tout x > √e

On a

min (g) = g(√e) = ln²(√e) - ln(√e) = 1/4 - 1/2 = -1/4

et g(x) = 0 ⇔ ln(x) = 0 ou ln(x) = 1 ⇔ x = 1 ou x = e

x___|0_____________1____________√e___________e__________+∞|

g(x)_|+∞_décroissante_0_décroissante_-1/4_croissante_0_croissante_+∞|

Ex3

1) f'(x) = 2x /x² = 2/x

f'(1) = 2

L'équation de (T) est donc y = 2x -2 + f(2) = 2x - 2 + 0 + 2 = 2x

soit y = 2x

(T) passe donc bien par l'origine du repère.

2) f"(x) = -2/x² <0

f est donc concave sur son domaine de définition.

3) On pose g(x) = f(x) - 2x = ln(x²) - 2x + 2

g'(x) = 2/x - 2

g'(x) > 0 pour tout x dans ]0 ; 1] et g'(x) <0 pour tout x > 1

g est donc croissante sur ]0 ; 1] et décroissante sur [1 ; +∞[ avec

g(1) = ln(1) - 2 + 2 = 0

On en déduit que g(x) ≤ 0 pour tout x ∈]0 ; +∞[

Et donc f(x) ≥ 2x pour tout x ∈]0 ; +∞[

(C) se trouve donc au dessous de (T). les deux courbes sont tangentes au point (1 ; 2)