FRstudy.me vous aide à trouver des réponses précises à vos questions. Rejoignez notre communauté pour accéder à des réponses rapides et fiables à vos questions de la part de professionnels expérimentés.
Sagot :
Réponse :
Les points A et B ont pour coordonnées A(1; 2)
et B(-1; 1).
1. Déterminer l'équation réduite de la droite d1
passant par A et parallèle à la droite d'équation
y = 2x - 1.
l'équation réduite peut s'écrire y = 2 x + b
2 = 2 + b ⇒ b = 0
donc l'équation réduite est : y = 2 x
2. Déterminer une équation cartésienne
de la droite d2 passant par B et parallèle à la droite
d'équation 2x – 4y - 1 = 0.
d2 d'équation cartésienne a x + b y + c; a un même vecteur directeur v de 2 x - 4 y - 1 = 0
(- b ; a) = (- 4 ; 2) ⇔ - b = - 4 ⇔ b = 4 et a = 2
donc d2 : 2 x - 4 y + c = 0
d2 passe par le point B(- 1 ; 1) ⇔ 2*(- 1) - 4*(1) + c = 0 ⇒ c = 6
donc d2 a pour équation cartésienne : 2 x - 4 y + 6 = 0
3. Démontrer que d1 et d2 sont sécantes en A.
d1 : y = 2 x et d2 : 2 x - 4 y + 6 = 0
vecteur directeur de d1 : u(- 1 ; 2)
d2 ; v(4 ; 2)
det(u ; v) = xy' - x'y = - 1*2 - 4*2 = - 2 - 8 = - 10 ≠ 0 donc les vecteurs u et v ne sont pas colinéaires donc les droites d1 et d2 sont sécantes
A(1 ; 2) ⇒ d1 : y = 2 x ⇔ 2 = 2*1 ⇒ A ∈ d1
A(1 ; 2) ⇒ d2 : 2 x - 4 y + 6 = 0 ⇔ 2*1 - 4*2 + 6 = 8 - 8 = 0 ⇒ A ∈ d2
donc les droites d1 et d2 sont sécantes au point A
4. Déterminer une équation de la droite d3 passant
par B et parallèle à la droite d'équation x=-2.
d3 : x = - 1
5. Vérifier que le point P(-1;-2) est le point d'intersection de d1, et d3
d1 : y = 2 x ⇒ P(- 1 ; - 2) ⇒ - 2 = 2 * (-1) donc P ∈ d1
d3 ; x = - 1 ⇒ P(- 1 ; - 2) ⇒ - 1 = - 1 donc P ∈ d3
Explications étape par étape :
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Revenez sur FRstudy.me pour des solutions fiables à toutes vos questions. Merci pour votre confiance.