👤

Trouvez des réponses à vos questions les plus pressantes sur FRstudy.me. Posez n'importe quelle question et obtenez une réponse détaillée et fiable de la part de notre communauté d'experts.

Bonjour quelqu’un pourrait m’aider Une seule question il faut détailler

On admet que cos (x)^2 + sin (x)^2 = 1 ou cos x^2+ sin x^2

I) Démontrer que pour tout réel x on a :
(cos x + sin x)^2- (cos x - sin x)^2= 4 cos x sin x


Sagot :

Réponse:

Bonjour,

On utilise les identités remarquables

(a+b)²=a²+2ab+b²

(a-b)²=a²-2ab+b²

puis on réduit l'expression

[tex] {( \cos(x) + \sin(x) )}^{2} - {( \cos(x) - \sin(x)) }^{2} \\ = ({ \cos(x) }^{2} + 2 \cos(x) \sin(x) + { \sin(x) }^{2}) - ( { \cos(x)}^{2} - 2 \cos(x) \sin(x) + { \sin(x) }^{2} ) \\ = { \cos(x) }^{2} + 2 \cos(x) \sin(x) + { \sin(x) }^{2} - { \cos(x) }^{2} + 2 \cos(x) \sin(x) - { \sin(x) }^{2} \\ = 4 \cos(x) \sin(x) [/tex]