Obtenez des conseils avisés et des réponses précises sur FRstudy.me. Posez n'importe quelle question et recevez des réponses rapides et bien informées de la part de notre communauté d'experts bien informés.
Sagot :
Réponse:
Bonjour
Explications étape par étape:
cette correction vous a t'elle été utile ?
Question 1
Puisque LNM est un triangle équilatéral, alors la hauteur issue de L coupe [NM] en O et O est au milieu du segment [NM].
Ainsi, [tex]NO = \dfrac{x}{2}[/tex].
De plus, puisque [NM] est la hauteur issue de L, alors le triangle MLO est rectangle en O. Calculons LO en utilisant le théorème de Pythagore :
[tex]MO^2+LO^2=LM^2\\\left( \dfrac{x}{2}\right)^2 + LO^2 = x^2\\\dfrac{x^2}{4} + LO^2 = x^2\\LO^2=x^2 - \dfrac{x^2}{4} \\LO^2 = \dfrac{4x^2}{4} - \dfrac{x^2}{4} \\LO^2=\dfrac{3x^2}{4} \\LO^2=\dfrac{3}{4} x^2\\LO = \sqrt{\dfrac{3}{4} x^2}\\LO = \dfrac{\sqrt{3}}{2} x[/tex]
Question 2
[tex]L(x)=\dfrac{b \times h}{2} = \dfrac{MN \times LO}{2} =\dfrac{x \times \dfrac{\sqrt{3}}{2}x}{2} = \dfrac{\dfrac{\sqrt{3}x^2}{2}}{2} = \dfrac{\sqrt{3}x^2}{4}[/tex].
Question 3
Si [tex]x=8[/tex], alors [tex]L(8)=\dfrac{\sqrt{3} \times 8^2}4 \approx 27,7[/tex] cm².
Question 4
Si [tex]x=2 \sqrt{2}[/tex] :
[tex]L(2 \sqrt{2})=\dfrac{\sqrt{3} \times (2 \sqrt{2})^2}{4}\\L(2 \sqrt{2})=\dfrac{\sqrt{3} \times 2^2 \times \sqrt{2}^2}{4}\\L(2 \sqrt{2})=\dfrac{\sqrt{3} \times 4 \times 2}{4}\\L(2 \sqrt{2})=\sqrt{3} \times 2\\L(2 \sqrt{2})=2 \sqrt{3}[/tex]
Cerise a donc raison !
Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Merci d'avoir choisi FRstudy.me. Nous espérons vous revoir bientôt pour encore plus de solutions.