👤

Obtenez des conseils avisés et des réponses précises sur FRstudy.me. Posez n'importe quelle question et recevez des réponses rapides et bien informées de la part de notre communauté d'experts bien informés.

Bonsoir! Je dois aider mon frère pour un devoir, mais j'ai aussi des difficultés aurait vous une idée?

On considère un triangle équilatéral LNM de côté [tex]x[/tex].
La hauteur issue de L coupe [NM] en O.
1. Calculer LO en fonction de [tex]x[/tex].
2. En déduire l’aire L([tex]x[/tex]) du triangle LNM en fonction de [tex]x[/tex].
3. Calculer l’aire du triangle LNM lorsque [tex]x[/tex] = 8 cm. Vous donnerez la valeur exacte, puis une valeur approchée à [tex]0,1cm^{2}[/tex] près.
4. Cerise affirme que pour que l’aire du triangle LNM soit égale à [tex]2\sqrt{3}cm^{2}[/tex], il faut que [tex]x[/tex] = [tex]2\sqrt{2} cm[/tex] . A-t-elle raison?

Merci d'avance!!


Sagot :

Réponse:

Bonjour

Explications étape par étape:

cette correction vous a t'elle été utile ?

View image Sinikmandengue
View image Sinikmandengue
Tommus

Question 1

Puisque LNM est un triangle équilatéral, alors la hauteur issue de L coupe [NM] en O et O est au milieu du segment [NM].

Ainsi, [tex]NO = \dfrac{x}{2}[/tex].

De plus, puisque [NM] est la hauteur issue de L, alors le triangle MLO est rectangle en O. Calculons LO en utilisant le théorème de Pythagore :

[tex]MO^2+LO^2=LM^2\\\left( \dfrac{x}{2}\right)^2 + LO^2 = x^2\\\dfrac{x^2}{4} + LO^2 = x^2\\LO^2=x^2 - \dfrac{x^2}{4} \\LO^2 = \dfrac{4x^2}{4} - \dfrac{x^2}{4} \\LO^2=\dfrac{3x^2}{4} \\LO^2=\dfrac{3}{4} x^2\\LO = \sqrt{\dfrac{3}{4} x^2}\\LO = \dfrac{\sqrt{3}}{2} x[/tex]

Question 2

[tex]L(x)=\dfrac{b \times h}{2} = \dfrac{MN \times LO}{2} =\dfrac{x \times \dfrac{\sqrt{3}}{2}x}{2} = \dfrac{\dfrac{\sqrt{3}x^2}{2}}{2} = \dfrac{\sqrt{3}x^2}{4}[/tex].

Question 3

Si [tex]x=8[/tex], alors [tex]L(8)=\dfrac{\sqrt{3} \times 8^2}4 \approx 27,7[/tex] cm².

Question 4

Si [tex]x=2 \sqrt{2}[/tex] :

[tex]L(2 \sqrt{2})=\dfrac{\sqrt{3} \times (2 \sqrt{2})^2}{4}\\L(2 \sqrt{2})=\dfrac{\sqrt{3} \times 2^2 \times \sqrt{2}^2}{4}\\L(2 \sqrt{2})=\dfrac{\sqrt{3} \times 4 \times 2}{4}\\L(2 \sqrt{2})=\sqrt{3} \times 2\\L(2 \sqrt{2})=2 \sqrt{3}[/tex]

Cerise a donc raison !