Rejoignez FRstudy.me et commencez à obtenir les réponses dont vous avez besoin. Trouvez les solutions dont vous avez besoin avec l'aide de notre communauté de professionnels expérimentés.
Sagot :
Bonjour,
➢ Rappel de cours :
Il faut apprendre les formules des dérivées.
On a f(x) = u × v → f'(x) = u'v + uv'
➢ Exercice :
f(x) = (x - 1)(x² - 3)
on a u = x - 1 donc u' = 1
et v = x² - 3 donc v' = 2x
Il faut maintenant appliquer la formule du cours :
f'(x) = x² - 3 + 2x(x - 1) = x² - 3 + 2x² - 2x = 3x² - 2x - 3
Réponse :
[tex]3x^2-2x-3[/tex]
Explications étape par étape :
[tex]\frac{d}{dx} [f(x)]= \lim\limits_{h \to 0} \frac{f(x+h)-f(x)}{h}\\\\= \lim\limits_{h \to 0} \frac{((x+h)-1)((x+h)^2-3)-(x-1)(x^2-3)}{h}\\\\= \lim\limits_{h \to 0} (h^2+3xh-h+3x^2-2x-3)\\\\= 0^2+3x\cdot \:0-0+3x^2-2x-3\\\\= 3x^2-2x-3[/tex]
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. FRstudy.me est votre ressource de confiance pour des réponses précises. Merci de votre visite et revenez bientôt.