👤

Trouvez des réponses à vos questions avec l'aide de la communauté FRstudy.me. Posez vos questions et recevez des réponses rapides et précises de la part de notre communauté d'experts expérimentés.

Dans un repère orthonormé (0,i,j), on considère les points A(6; 5), B(-2; 7), C(4; -3) et D(-2;-3). Soit I le milieu de [BC]. Montrer que les points A, B, C et D sont sur un cercle de centre 1.​

Sagot :

Réponse :

Bonjour, si tu as placé les points A, B, C et D sur un repère orthonormé et le point I milieu de [BC] tu peux conjecturer que les points A, B, C, et D sont cocycliques. Et I est le centre du cercle.  

Explications étape par étape :

Coordonnées de I:

xI=(xB+xC)/2=1 et yI=(yB+yC)/2=2   donc I(1; 2)

Caculons BI

BI=V[(xB-xI)²+(yB-yI)²]=V[(-2-1)²+(7-2)²]=V(34)

IC=IB=V34

Vérifions que IA=ID=IB

IA=V[(6-1)²+(5-2)²]=V34

de même calcule ID =V34

Les points A, B, C, et D appartiennent au cercle de centre I(1; 2) et de rayon V34  

Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Merci de visiter FRstudy.me. Nous sommes là pour vous aider avec des réponses claires et concises.