👤

Trouvez des solutions à vos problèmes avec FRstudy.me. Obtenez les informations dont vous avez besoin de la part de notre communauté d'experts qui fournissent des réponses précises et complètes à toutes vos questions.

soit la fonction f(x) =2x+3/x-2. a) etudier les variation f et tracer la courbe (cf) b) determiner l'equation de la tangente au point xo=0


Sagot :

bonjour

 f(x) = (2x+3)/(x-2)  

1)

ensemble de définition

le dénominateur ne doit pas s'annuler

  D = R - {2}

 f est définie sur les intervalles  ]-∞ ; 2[   et   ]2 ; +∞[

2)

dérivée

(u/v)' = (u'v-v'u)/v²

u : 2x + 3           u' : 2

v : x - 2                  v' : 1

f'(x) = [2(x - 2) - (2x + 3)] / (x - 2)²

     = (2x - 4 - 2x - 3)/(x - 2)²

    = -7/(x - 2)²  

f'(x) < 0 sur D

3)

tableau des variations

    x       -∞                     2                         +∞

f'(x)                  -             ||             -

f(x)        2        ↘      -∞  ||  +∞        ↘        2

quand x -> ± ∞    f(x) a même limite que 2x/x  soit 2

quand x -> 2⁺    le numérateur -> 7, le dénominateur -> 0⁺

                          f(x) -> + ∞

quand x -> 2⁻      f(x) -> -∞  

4)

représentation graphique

les asymptotes de l'hyperbole sont les droites d'équations

   x = 2     et     y = 2

(il faut les placer sur le graphique que l'on construit à l'aide de quelques points)

5)

tangente au point d'abscisse 0

f(0) = -3/2

tangente en A(0 ; -3/2)

 f'0) = -7/4

cette équation est de la forme :  y = f(0) + f′(0)(x - 0) .

                                                     y = -3/2 + (-7/4)x

(la tangente à la courbe représentative d'une fonction f au point d'abscisse "a" a pour équation: y = f(a) + f′(a)(x - a) ).

View image Jpmorin3
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses actualisées.