👤

Profitez au maximum de vos questions avec les ressources d'FRstudy.me. Posez vos questions et obtenez des réponses détaillées et fiables de la part de notre communauté d'experts expérimentés.

Bonjour,

pour 4x²-9[tex]\leq 0[/tex]

j'ai mis: (4x-3)²[tex]\leq 0[/tex]

x[tex]\leq (3/4)[/tex]

Est-ce que c'est bon?


Sagot :

Réponse :

Solution = [ -3/2 ; +3/2 ]

Explications étape par étape :

■ (2x-3) (2x+3) ≤ 0 donne Solution = [ -3/2 ; +3/2 ] .

Bonjour


4x^2 - 9 << 0


si tu développes ce que tu as écris tu te rendras compte que c’est incorrecte :

(4x - 3)^2 = 16x^2 - 24x + 9 # 4x^2 - 9


C’est une identité remarquable mais ce n’est pas la bonne que tu as utilisé :

4x^2 - 9 << 0

(2x)^2 - 3^2 << 0


a^2 - b^2 = (a - b)(a + b)


(2x - 3)(2x + 3) << 0


2x - 3 = 0 et 2x + 3 = 0

2x = 3 et 2x = -3

x = 3/2 et x = -3/2


x………….|-inf………(-3/2)…….3/2…….+inf

2x-3…….|……(-)…………….(-)….o….(+)……..

2x+3……|……(-)……..o……(+)………(+)………

Ineq…….|……(+)…….o……(-)…..o….(+)…….


[tex]x \in [-3/2 ; 3/2][/tex]