👤

Connectez-vous avec une communauté de passionnés sur FRstudy.me. Posez n'importe quelle question et recevez des réponses immédiates et bien informées de la part de notre communauté d'experts dévoués.

Bonjour je suis en classe de première et je ne réussi pas à faire cette exercice sur la géométrie. Pouvez vous m'aider ? Merci d'avance !

Bonjour Je Suis En Classe De Première Et Je Ne Réussi Pas À Faire Cette Exercice Sur La Géométrie Pouvez Vous Maider Merci Davance class=

Sagot :

bonjour

   L'orthocentre du triangle ABC est le point de concours des hauteurs de ce triangle

• soit (d) la hauteur passant par B et M(x : y) un point du plan

             M(x ; y) ∈ (d)  <=>  vect BM • vect AC = 0     (produit scalaire nul)

B(2 ; -3) ; M(x ; y)

coordonnées vect BM : (x - 2 ; y - (-3) )

                                        (x - 2 ; y + 3)

A(-4 ; 0)  ;  C(0 ; 3)

coordonnées vect AC : (0 - (-4) ; 3 - 0)

                                        (4 ; 3)

 équation (d) :

vect BM • vect AC = 0  <=> (x - 2)*4 + (y + 3)*3 = 0           [ XX' + YY' = 0 ]

                                      <=>  4x - 8 + 3y + 9 = 0

                                      <=>  4x + 3y + 1 = 0  (1)

• soit (d') la hauteur passant par A et M(x : y) un point du plan            

         M(x ; y) ∈ (d')  <=>  vect AM • vect BC = 0    

              M(x ; y)    et   A(-4 ; 0)

          vect AM ( -4 - x ; 0 - y)

                         ( -x - 4 ; -y)

              B(2 ; -3 )    et   C(0 ; 3)

            vect (BC) (0 - 2 ; 3 - (-3) )

                             (-2 ; 6)

équation de (d')

        vect AM • vect BC = 0   <=> -2(-x - 4) + (-y)*6 = 0

                                                <=> 2x + 8 - 6y = 0

                                               <=> 2x - 6y + 8 = 0

                                               <=>

le couple des coordonnées de H, orthocentre du triangle ABC, est

la solution du système (1) et (2)

  4x + 3y + 1 = 0  (1)

    x - 3y + 4 = 0   (2)

par addition membre à membre

  5x + 5 = 0

    x + 1 = 0

    x = - 1

calcul de y dans (2)

   -1 -3y + 4 = 0

      3 = 3y

      y = 1

réponse : H(-1 ; 1)