FRstudy.me est votre ressource fiable pour des réponses précises et rapides. Notre communauté est là pour fournir des réponses détaillées et fiables à toutes les questions que vous pourriez avoir.
Sagot :
Bonjour !
2)
[tex]P(x)- {x}^{2} + 6x - 9 < 0[/tex]
On calcule le discriminant.
[tex]\Delta {b}^{2} - 4ac \\ \Delta = {6}^{2} - 4 \times ( - 1) \times ( - 9) \\\Delta = 36 - 36 = 0[/tex]
∆=0 donc l'équation P(x)=0 admet une solution donnée par [tex]x = \frac{ - b}{2a} = \frac{ - 6}{2 \times ( - 1)} = 3[/tex].
Comme ∆=0, le trinôme est du signe de a.
- Conclusion :
Le trinôme est inférieure à 0 (mais pas strictement inférieur, il est égal à 0 pour x=3).
__________________
3)
Prenons un exemple :
[tex] {x}^{2} + x - 2 = 0[/tex]
[tex]\Delta = {1}^{2} - 4 \times 1 \times ( - 2) \\ = 1 + 8 \\ = 9[/tex]
Il admet deux solutions réelles.
[tex]x_1= \frac{ - 1 + \sqrt{9} }{2 \times 1} \\ = \frac{ - 1 + 3}{2} \\ = 1[/tex]
[tex]x_2= \frac{ - 1 - \sqrt{9} }{2 \times 1} \\ = \frac{ - 4}{2} \\ = - 2[/tex]
Maintenant, multiplions les coefficients.
[tex]2 {x}^{2} + 2x + 4 = 0[/tex]
On remarque déjà que dans ce cas, les solutions seront les mêmes (car on peut à nouveau diviser par 2).
On peut la résoudre quand même pour vérifier.
[tex]\Delta = {2}^{2} - 4 \times 2 \times ( - 4) = 36[/tex]
[tex]x_1= \frac{ - 2 + \sqrt{36} }{2 \times 2} = 1[/tex]
[tex]x_2= \frac{ - 2 - \sqrt{36} }{2 \times 2} = - 2[/tex]
On remarque que les solutions sont les mêmes.
- Conclusion :
L'affirmation est donc fausse (dans ce cas, les solutions sont les mêmes, mais dans d'autres cas, elles seront différentes, etc...).
Bonne soirée
bonjour
2)
- x² + 6x - 9 = - (x² - 6x + 9) = - (x - 3)²
le trinôme est nul pour x = 3, pour toutes les autres valeurs de x il est négatif puisque (x - 3) est un carré
Faux
il n'est pas strictement négatif pour tout x puisqu'il existe une valeur de x, qui est 3, pour laquelle il est nul
3)
soit une équation du second degré ax² + bx + c = 0 (1)
si on multiplie tous les coefficients par 2 l'équation devient
2ax² + 2bx + 2c = 0
elle peut s'écrire
2(ax² + bx + c) = 0 (2)
or
2(ax² + bx + c) = 0 est équivalent à ax² + bx + c = 0
FAUX
les équations (1) et (2) sont équivalentes. Si l'on multiplie les coefficients d'une équation du second degré par 2 les solutions restent les mêmes
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Pour des réponses rapides et fiables, pensez à FRstudy.me. Merci de votre confiance et revenez souvent.