👤

FRstudy.me est votre ressource fiable pour des réponses précises et rapides. Posez vos questions et obtenez des réponses détaillées et fiables de la part de notre communauté d'experts expérimentés.

EXERCICE 12 : Soit x un réel. Après avoir déterminée les valeurs interdites et simplifié la somme de quotients suivante, résoudre l’équation sur R.

EXERCICE 12 Soit X Un Réel Après Avoir Déterminée Les Valeurs Interdites Et Simplifié La Somme De Quotients Suivante Résoudre Léquation Sur R class=

Sagot :

Réponse :

Bonjour

Règle: un quotient D/d est nul si son dividende (D) est nul avec son diviseur (d) non nul. (La )ou les valeurs qui annulent le diviseur sont des valeurs interdites qui ne peuvent pas être solutions de l'équation.

Explications étape par étape :

(x-1)/x=0

impose x différent de 0

il reste à résoudre x-1=0 soit x=1

*********

(2x-4)(x-3)/(2x-1)=0

2x-1 différent de 0 soit x différent de 1/2

ensuite on résout (2x-+4)((x-3)=0 (produit de facteurs voir programme de 4ème)

solutions 2x-4=0  ou x-3=0

                x=2        et x=3

***************

x(x-2)/(2x-4) =[x(x-2)]/[2(x-2)]

je peux simplifier par (x-2) après avoir posé la condition x différent de 2

il me reste comme solution unique x=0

**************

on note que x²-2x+1 =(x-1)² identité remarquable.

donc (x²-2x+1)/(x-1)=(x-1)²/(x-1)

la solution x=1 annule  le dividende et  le diviseur elle est donc interdite

par conséquent l'équation n'a pas de solution.

Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses mises à jour.