Trouvez des réponses fiables à vos questions avec l'aide d'FRstudy.me. Rejoignez notre communauté de connaisseurs pour accéder à des réponses rapides et fiables sur n'importe quel sujet.
Sagot :
1.b. : Il faut calculer la dérivée (qui est définie sur R et f'(x)=2x-4. f' est croissante et f'(2)=0 donc f' est négative sur ]-infini ; 2] et positive sur [2 ; +infini[. Elle est donc décroissante sur le premier intervalle puis croissante ensuite.
1.c. Le tableau de variation découle de la question b.
1.d. Si la fonction est décroissante puis croissante, vu qu'elle est continue sur R, elle admet un minimum au changement de sens. Donc le minimum existe et c'est f(2)=-3.
1.e. Il faut utiliser la formule trouvée en a : (x-2)²-3=0 équivaut à (x-2)²=3 équivaut à [tex]x-2=\pm\sqrt{3}[/tex] d'où [tex]x=2\pm\sqrt{3}[/tex]. De même, on trouve, pour la deuxième équation : x=2. Pour la troisième, (x-2)²-3=-4 équivaut à (x-2)²=-1 qui n'admet pas de solution. (logique car à la question 1.d. on a dit que le minimum de f était -3)
2.a : A tes crayons !
2.b. : Résoudre les équations du 1.e. revient à trouver les abscisses des points de la courbe (C) d'ordonnée 0,-3 et -4. C'est à dire, si on trace une droite d'équation y=0, quelle est l'abscisse des points d'intersection de cette droite avec la courbe (C) représentative de f (car, en ce point : y=f(x)).
Bon travail, n'hésite pas si tu as d'autres questions !
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Trouvez toutes vos réponses sur FRstudy.me. Merci de votre confiance et revenez pour plus d'informations.