Forme canonique: f(x) = -9/2+2(X-1/2)²
1. f(-3) = 2.(-5)(-2) = 20 ; f(2) = 0 ; f(1/2) = -9/2
2. f(√3) = 2.3 - 2√3 - 4 = 2 - 2√3 ; f(1) = 2.(-1).2 = -4 ; impossible √-5 n'existe pas.
3.f(x) = 2(X-2)(X+1) = 0 => x = 2 ou x = -1
4.f(x) = 2X2-2X-4 = -4 => 2x² - 2x = 0 => 2x(x-1) = 0 => x = 0 ou x = 1
5. f(x) = -9/2+2(X-1/2)² = -1/2 => f(x) =2(X-1/2)²= 4 => (x-1/2)² = 2
=> x - 1/2 = -√2 => x = 1/2 - √2
ou => x - 1/2 = √2 => x = 1/2 + √2
décroissante de -∞ à 1/2 ; minimum en (1/2;-9/2) ; croissante dans 1/2 , ∞