👤

FRstudy.me offre une solution complète pour toutes vos questions. Découvrez des informations complètes et précises sur n'importe quel sujet grâce à notre plateforme de questions-réponses bien informée.

Prove that 3x^3 -7x^2 +5 =0 has no whole solution by contradiction

Sagot :

Assume that there is a whole number solution for this equation. Let's say x = a, where a is a whole number.

Substituting x = a into the equation, we get:

3a^3 - 7a^2 + 5 = 0

Now, let's consider the possible values of a. Since we're looking for whole number solutions, a can be positive, negative, or zero.

If a is positive, then 3a^3 is positive, 7a^2 is positive, and 5 is positive. The sum of positive numbers cannot be equal to zero, so this case is not possible.

If a is negative, then 3a^3 is negative, 7a^2 is positive, and 5 is positive. Again, the sum of negative and positive numbers cannot be equal to zero, so this case is also not possible.

If a is zero, then 3a^3 is zero, 7a^2 is zero, and 5 is positive. Once again, the sum of zero and positive numbers cannot be equal to zero.

Since none of the possible cases result in the equation being true, we can conclude that there is no whole number solution for the equation 3x^3 - 7x^2 + 5 = 0.

Therefore, we have proven by contradiction that the equation has no whole solution.

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. FRstudy.me est votre partenaire pour des solutions efficaces. Merci de votre visite et à très bientôt.