👤

Recevez des conseils d'experts et un soutien communautaire sur FRstudy.me. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses rapides et complètes à toutes vos questions pressantes.

Bonjour, j'aurai surtout besoin d'aide pour les questions 2 et 3. Vous pouvez me répondre en anglais ou en français (c'est des maths en anglais). Merci !

An original problem that Fibonacci investigated (in the year 1202) was about how fast rabbits could breed in ideal circumstances. Suppose a newly-born pair of rabbits, one male, one female, are put in a field. Rabbits are able to mate at the age of two months so that at the end of its second month a female can produce another pair of rabbits. Suppose that our rabbits never die and that the female always produces one new pair (one male, one female) every month from the second month on. The puzzle that Fibonacci posed was...

1)How many pairs will there be in one year?

2) How many pairs will there be in three years?

3) How long will it take to get more than 10 billions ?​


Bonjour Jaurai Surtout Besoin Daide Pour Les Questions 2 Et 3 Vous Pouvez Me Répondre En Anglais Ou En Français Cest Des Maths En Anglais Merci An Original Prob class=

Sagot :

Let's solve each question step by step:

1) **Pairs in one year**:
At the end of the first month, we have 1 pair.
At the end of the second month, we still have 1 pair.
At the end of the third month, the original pair gives birth to a new pair, so we have 2 pairs.
At the end of the fourth month, we have 3 pairs (the original pair, plus the new pair).
At the end of the fifth month, we have 5 pairs.
At the end of the sixth month, we have 8 pairs.
This pattern follows the Fibonacci sequence: 1, 1, 2, 3, 5, 8, ...
In one year (12 months), we sum the pairs for each month up to the 12th month:
1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 + 89 + 144 = 377 pairs.

2) **Pairs in three years**:
To find the number of pairs in three years, we continue the Fibonacci sequence until we reach the 36th month (3 years).
The 36th month in the Fibonacci sequence is 149, so there will be 149 pairs of rabbits after three years.

3) **Time to get more than 10 billion pairs**:
We need to find the month in which the number of pairs exceeds 10 billion.
The Fibonacci sequence doesn't increase linearly; it grows exponentially.
So, we can iterate through the Fibonacci sequence until we find a number exceeding 10 billion.
We need to calculate the Fibonacci sequence iteratively until we reach a number greater than 10 billion.
Once we find the first Fibonacci number greater than 10 billion, we note the month at which it occurs.

Nous valorisons votre présence ici. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Merci d'avoir choisi FRstudy.me. Nous espérons vous revoir bientôt pour encore plus de solutions.