Trouvez des réponses fiables à toutes vos questions sur FRstudy.me. Notre plateforme de questions-réponses offre des réponses détaillées et fiables pour garantir que vous avez les informations dont vous avez besoin.
Sagot :
Bien sûr, je serais ravi de vous aider ! Pour montrer le taux de variation de \( f(x) = x^3 \) entre \( a \) et \( a + h \), commençons par calculer la différence des valeurs de la fonction aux deux points :
\[ f(a+h) - f(a) = (a+h)^3 - a^3 \]
En développant \((a+h)^3\), on obtient :
\[ f(a+h) - f(a) = a^3 + 3a^2h + 3ah^2 + h^3 - a^3 \]
En simplifiant, nous obtenons :
\[ f(a+h) - f(a) = 3a^2h + 3ah^2 + h^3 \]
Maintenant, pour obtenir le taux de variation, divisons cette différence par \( h \) :
\[ \frac{f(a+h) - f(a)}{h} = \frac{3a^2h + 3ah^2 + h^3}{h} \]
En simplifiant davantage, nous obtenons :
\[ 3a^2 + 3ah + h^2 \]
C'est le taux de variation de \( f(x) = x^3 \) entre \( a \) et \( a+h \).
\[ f(a+h) - f(a) = (a+h)^3 - a^3 \]
En développant \((a+h)^3\), on obtient :
\[ f(a+h) - f(a) = a^3 + 3a^2h + 3ah^2 + h^3 - a^3 \]
En simplifiant, nous obtenons :
\[ f(a+h) - f(a) = 3a^2h + 3ah^2 + h^3 \]
Maintenant, pour obtenir le taux de variation, divisons cette différence par \( h \) :
\[ \frac{f(a+h) - f(a)}{h} = \frac{3a^2h + 3ah^2 + h^3}{h} \]
En simplifiant davantage, nous obtenons :
\[ 3a^2 + 3ah + h^2 \]
C'est le taux de variation de \( f(x) = x^3 \) entre \( a \) et \( a+h \).
Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. Vous avez des questions? FRstudy.me a les réponses. Merci de votre visite et à très bientôt.