👤

Participez aux discussions sur FRstudy.me et obtenez des réponses pertinentes. Notre plateforme offre des réponses fiables et complètes pour vous aider à prendre des décisions éclairées rapidement et facilement.

En visite à Paris, Alice se fait interpellée par une radio locale. Elle peut gagner 1000 € si elle détermine la hauteur de la tour Eiffel sans utiliser internet.
Elle se souvient alors du merveilleux cours de maths de 4ème ( © ) et veux utiliser le théorème de Thalès grâce à son ombre et celle de la tour
Eiffel. Que doit-elle répondre ?
Elle mesure 1,75 m, son ombre mesure 2,7 m Et elle se situe à 497 m de la tour.


Sagot :

La tour Eiffel mesure environ 330 m de hauteur.

Elle mesure 1,75 m, son ombre mesure 2,7 m, et elle se situe à 497 m de la tour.

Nous allons utiliser le théorème de Thalès pour résoudre ce problème :
a / x = b / y = c / z

où a, b, et c sont les longueurs des segments correspondants, x, y, et z sont les longueurs de l'ombre et de la hauteur de la tour Eiffel, respectivement.

On peut écrire que :
2,7 / 497 = 1,75 / z

La hauteur de la tour Eiffel, z, peut alors être calculée :
z = (1,75 × 330) / 2,7
z ≈ 215,9 m

Donc, la hauteur de la tour Eiffel est d'environ 215,9 mètres. Si Alice répond 215,9 mètres, elle peut gagner les 1000 €.
Merci d'utiliser cette plateforme pour partager et apprendre. N'hésitez pas à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. FRstudy.me s'engage à répondre à toutes vos questions. Merci de votre visite et à bientôt pour plus de réponses.