👤

Découvrez une mine d'informations et obtenez des réponses sur FRstudy.me. Trouvez des réponses précises et fiables de la part de notre communauté d'experts dévoués.

Of a group of 200 persons, 100 are interested in Music, 70 are interested in photography and 40 like skiing. Also 40 are interested in both Music and photography, 30 ni both Music and skiing, 20 ni both photography and skiing, while 20 are interested in photography but not in Music or skiing How many persons are interested in al the three?
A. 40 B. 20 C. 5 D. 8 E. 10


Sagot :

Réponse:

To find the number of persons interested in all three activities (Music, photography, and skiing), we can use the principle of inclusion-exclusion.

Let:

- A = number of persons interested in Music

- B = number of persons interested in photography

- C = number of persons interested in skiing

- n(A) = 100

- n(B) = 70

- n(C) = 40

- n(A ∩ B) = 40

- n(A ∩ C) = 30

- n(B ∩ C) = 20

- n(B - A - C) = 20

We want to find n(A ∩ B ∩ C).

Using the principle of inclusion-exclusion:

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(A ∩ C) - n(B ∩ C) + n(A ∩ B ∩ C) + n(B - A - C)

Plugging in the values:

200 = 100 + 70 + 40 - 40 - 30 - 20 + n(A ∩ B ∩ C) + 20

200 = 220 - 90 + n(A ∩ B ∩ C)

n(A ∩ B ∩ C) = 70

Therefore, there are 10 persons interested in all three activities: Music, photography, and skiing.

Answer: E. 10

Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Pour des réponses rapides et fiables, pensez à FRstudy.me. Merci de votre visite et à bientôt.