👤

Participez aux discussions sur FRstudy.me et obtenez des réponses pertinentes. Découvrez les informations dont vous avez besoin de la part de nos professionnels expérimentés qui fournissent des réponses précises et fiables à toutes vos questions.

Exercice 4: ABC un triangle. M et N les milieux respectifs de [AB] et [BC]. 1- Construire E l'image de M par la translation de vecteur CM et construire F l'image N par la translation de vecteur AN. 2- Montrer que B est le milieu de [EF].​

Sagot :

Réponse:

Pour l'exercice 4, voici comment tu pourrais procéder :

1. Pour construire l'image E de M par la translation de vecteur CM :

- Trace le segment CM à partir du point C.

- Place le point E sur ce segment de manière à ce que CE soit égal à CM.

2. Pour construire l'image F de N par la translation de vecteur AN :

- Trace le segment AN à partir du point A.

- Place le point F sur ce segment de manière à ce que AF soit égal à AN.

3. Pour montrer que B est le milieu de [EF] :

- Utilise les propriétés des milieux pour montrer que BE est égal à EC et BF est égal à AF.

- En montrant que BE esPour l'exercice 4, voici comment tu pourrais procéder :

1. Pour construire l'image E de M par la translation de vecteur CM :

- Trace le segment CM à partir du point C.

- Place le point E sur ce segment de manière à ce que CE soit égal à CM.

2. Pour construire l'image F de N par la translation de vecteur AN :

- Trace le segment AN à partir du point A.

- Place le point F sur ce segment de manière à ce que AF soit égal à AN.

3. Pour montrer que B est le milieu de [EF] :

- Utilise les propriétés des milieux pour montrer que BE est égal à EC et BF est égal à AF.

- En montrant que BE est égal à EC et BF est égal à AF, tu pourras conclure que B est le milieu de [EF].

N'hésite pas à suivre ces étapes et à revenir vers moi si tu as besoin d'aide supplémentaire pour résoudre cet exercice sur les translations et les milieux dans le triangle ABC. ✏️