👤

Explorez une multitude de sujets et trouvez des réponses fiables sur FRstudy.me. Découvrez des informations fiables et rapides sur n'importe quel sujet grâce à notre réseau de professionnels expérimentés.

Soit la fonction h Défini défini sur R par : h(x) = 4(x-1) (x-5) (x+3).
Déterminer son signe


Sagot :

Tha0

Réponse :

1) Pour x>0, comme la fonction qui à x associe  est continue, elle est bien intégrable, donc f est bien définie.

Elle est même dérivable sur tout intervalle  avec a>0 donc elle est dérivable sur I

et pour tout x > 0

qui est toujours strictement positif, donc f est strictement croissante sur I.

2)

pour tout x >= 1, comme la fonction exponentielle est croissante, nous avons

donc

AInsi

et comme ln(x) tend vers plus l'infini quand x tend vers plus l'infini, nous avons que

3)

a)

pour 0 < x <=1, comme la fonction exponentielle est croissante

Donc pour t dans [x;1]

donc

, ainsi

Comme

Nous avons que

4) il suffit d'écrire dans un tableau de variations les résultats déjà démontrés.

5)

f'est dérivable car quotien de fonctions qui le sont, et pour x >0

Ceci s'annule pour x = 1, donc C admet un point d'inflextion en A(1, 0)

et une équation de la tangente T à C au point A est

c) faut faire le dessin

6)

a) c'est une application du théroème de la bijection, f est une bijection de IR+ dans IR+ car strictement croissante.

b)

donc la suite (un) est croissante.

c)

On peut le montrer par l'absurde. Si on suppose qu elle est majorée, on arrive à une contradiction en passant au rang suivant en re utilisant ce que nous avons écit au b)

d)

la suite (un) tend vers plus l'infini.

Merci

Explications étape par étape :

Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses mises à jour.